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Abstract

We present a component-based method and two global methods for face recognition and

evaluate them with respect to robustness against pose changes. In the component system we

first locate facial components, extract them, and combine them into a single feature vector

which is classified by a support vector machine (SVM). The two global systems recognize faces

by classifying a single feature vector consisting of the gray values of the whole face image. In

the first global system we trained a single SVM classifier for each person in the database. The

second system consists of sets of view-specific SVM classifiers and involves clustering during

training. We performed extensive tests on a database which included faces rotated up to about

40� in depth. The component system clearly outperformed both global systems.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past 20 years numerous face recognition papers have been published in

the computer vision community; a survey can be found in [1]. The number of real-

world applications (e.g., surveillance, secure access, human/computer interface)
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and the availability of cheap and powerful hardware also lead to the development of

commercial face recognition systems. Despite the success of some of these systems in

constrained scenarios, the general task of face recognition still poses a number of

challenges with respect to changes in illumination, facial expression, and pose.

In the following, we give a brief overview on face recognition methods. Focusing
on the aspect of pose invariance, we divide face recognition techniques into two cat-

egories: (i) global approach and (ii) component-based approach.

(i) In this category a single feature vector that represents the whole face image is

used as input to a classifier. Several classifiers have been proposed in the litera-

ture, e.g., minimum distance classification in the eigenspace [2,3], Fisher�s discri-
minant analysis [4], and neural networks [5]. A comparison between various

state-of-the-art global techniques including eigenfaces, Fisher�s discriminant

analysis, and kernel PCA can be found in [6,7]. Global techniques work well
for classifying frontal views of faces. However, they are not robust against pose

changes since global features are highly sensitive to translation and rotation of

the face. To avoid this problem, an alignment stage can be added before classi-

fying the face. Aligning an input face image with a reference frontal face image

requires computing correspondences between the two face images. These corre-

spondences are usually determined for a small number of prominent points in the

face like the center of the eye, the nostrils, or the corners of the mouth. Based on

these correspondences the input face image can be warped to a reference face im-
age. An affine transformation is computed to perform the warping in [8]. Active

shape models are used in [9] to align input faces with model faces. A semi-auto-

matic alignment step in combination with support vector machine (SVM) classi-

fication was proposed in [10]. Due to self-occlusion, automatic alignment

procedures will eventually fail to compute the correct correspondences for large

pose deviations between input and reference faces. An alternative, which allows a

larger range of views, is to combine a set of view-specific classifiers, originally

proposed in a biological context in [11]. In [12], an eigenface approach was used
to recognize faces under variable pose by grouping the training images into sev-

eral separate eigenspaces, one for each combination of scale and orientation.

Combining view-specific classifiers has also been applied to face detection. The

system presented in [13] was able to detect faces rotated in depth up to �90� with
two na€ııve bayesian classifiers, one trained on frontal views, the other one trained

on profiles.

(ii) An alternative to the global approaches is to classify local facial components.

The main idea of component-based recognition is to compensate for pose
changes by allowing a flexible geometrical relation between the components in

the classification stage. In [14], face recognition was performed by independently

matching templates of three facial regions (both eyes, nose, and mouth). The

configuration of the components during classification was unconstrained since

the system did not include a geometrical model of the face. A similar approach

with an additional alignment stage was proposed in [15]. In an effort to enhance

the robustness against pose changes the originally global eigenface method has

been further developed into a component-based system [12] where PCA is
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applied to local facial components (eyes, nose, and mouth). Elastic grid match-

ing described in [16] uses Gabor wavelets to extract features at grid points and

graph matching for the proper positioning of the grid. The recognition was

based on wavelet coefficients that were computed on the nodes of a 2-D elastic

graph. In [17], a window was shifted over the face image and the DCT coeffi-
cients computed within the window were fed to a 2-D Hidden Markov Model.

A probabilistic approach using part-based matching has been proposed in [18]

for expression invariant and occlusion tolerant recognition of frontal faces.

We present two global approaches and a component-based approach to face rec-

ognition and evaluate their robustness against pose changes. The first global method

consists of a straightforward face detector which extracts the face from an input im-

age and propagates it to a set of SVM classifiers that perform the face recognition.

By using a face detector we achieve translation and scale invariance. In the second
global method we split the images of each person into view-specific clusters. We then

train view-specific SVM classifiers on each single cluster. In contrast to the global

methods, the component-based system uses a face detector that detects and extracts

local components of the face. The detector consists of a set of SVM classifiers that

locate learned facial components and a single geometrical classifier that checks if

the configuration of the components matches a learned geometrical face model.

The detected components are extracted from the image, normalized in size, and

fed to a set of SVM classifiers.
The outline of the paper is as follows: Section 2 gives a brief overview on SVM learn-

ing and on strategies for multi-class classification with SVMs. In Section 3 we describe

the two global methods for face recognition. Section 4 is about the component-based

system. Section 5 contains experimental results and a comparison between the global

and component systems. Section 6 concludes the paper and suggests future work.
2. Support vector machine classification

We first explain the basics of SVMs for binary classification [19]. Then we discuss

how this technique can be extended to deal with general multi-class classification

problems.

2.1. Binary classification

SVMs belong to the class of maximum margin classifiers. They perform pattern
recognition between two classes by finding a decision surface that has maximum dis-

tance to the closest points in the training set which are termed support vectors. We

start with a training set of points xi 2 n, i ¼ 1; 2; . . . ;N where each point xi belongs

to one of two classes identified by the label yi 2 f�1; 1g. Assuming linearly separable

data,1 the goal of maximum margin classification is to separate the two classes by a
1 For the non-separable case the reader is referred to [19].
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hyperplane such that the distance to the support vectors is maximized. This hyper-

plane is called the optimal separating hyperplane (OSH). The OSH has the form:
f ðxÞ ¼
X‘

i¼1

aiyixi � xþ b; ð1Þ
The coefficients ai and the b in Eq. (1) are the solutions of a quadratic program-

ming problem [19]. Classification of a new data point x is performed by computing

the sign of the right-hand side of Eq. (1). In the following we will use:
dðxÞ ¼
P‘

i¼1 aiyixi � xþ b

k
P‘

i¼1 aiyixik
ð2Þ
to perform multi-class classification. The sign of d is the classification result for x,

and jdj is the distance from x to the hyperplane. Intuitively, the farther away a point

is from the decision surface, i.e., the larger jdj, the more reliable the classification

result.

The entire construction can be extended to the case of nonlinear separating sur-

faces. Each point x in the input space is mapped to a point z ¼ UðxÞ of a higher di-

mensional space, called the feature space, where the data are separated by a

hyperplane. The key property in this construction is that the mapping Uð�Þ is subject
to the condition that the dot product of two points in the feature space UðxÞ � UðyÞ
can be rewritten as a kernel function Kðx; yÞ. The decision surface has the form:
f ðxÞ ¼
X‘

i¼1

yiaiKðx; xiÞ þ b;
again, the coefficients ai and b are the solutions of a quadratic programming

problem. Note that f ðxÞ does not depend on the dimensionality of the feature space.

An important family of kernel functions is the polynomial kernel
Kðx; yÞ ¼ ð1þ x � yÞd ;

where d is the degree of the polynomial. In this case the features of the mapping UðxÞ
are all the possible monomials of input features up to the degree d.

2.2. Multi-class classification

There are a number of strategies for solving q-class problems with binary SVM

classifiers (see, e.g. [20]). Popular are the one-vs-all and the pairwise approach:

(i) In the one-vs-all approach q SVMs are trained. Each of the SVMs separates a

single class from all remaining classes [21,22].

(ii) In the pairwise approach qðq� 1Þ=2 machines are trained. Each SVM separates

a pair of classes. The pairwise classifiers are arranged in trees, where each tree

node represents an SVM. A bottom-up tree, similar to the elimination tree used

in tennis tournaments, was originally proposed in [23] for recognition of 3-D ob-
jects and was applied to face recognition in [24]. A top-down tree structure has

been published in [25].
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There is no thorough theoretical analysis of multi-class techniques for SVMs with

respect to recognition performance. Experiments on person recognition show similar

classification results for the two strategies [26]. A more recent comparison between

several multi-class techniques [20] favors the one-vs-all approach because of its sim-

plicity and excellent classification performance. Regarding the training effort, the
one-vs-all approach is preferable over the pairwise approach since only q SVMs have

to be trained compared to qðq� 1Þ=2 SVMs in the pairwise approach. The run-time

complexity of the two strategies is similar: The one-vs-all approach requires the eval-

uation of q, the pairwise approach the evaluation of q� 1 SVMs. We opted for one-

vs-all since it seems at least on par with other approaches regarding the classification

rate and because it requires the training of only q classifiers.
3. Global approach

Both global systems described in this paper consist of a face detection stage, where

the face is detected and extracted from an input image and a recognition stage where

the person�s identity is established.

3.1. Face detection

We developed a face detector similar to the one described in [27]. In order to de-

tect faces at different scales we first computed a resolution pyramid for the input im-

age and then shifted a 58� 58 window over each image in the pyramid. We applied

two preprocessing steps to the gray images to compensate for certain sources of im-

age variations [28]. A best-fit intensity plane was subtracted from the gray values to

compensate for cast shadows. Then histogram equalization was applied to remove

variations in the image brightness and contrast. The resulting gray values were nor-

malized to be in a range between 0 and 1 and were used as input features to a second-
degree polynomial SVM classifier. Some detection results are shown in Fig. 1.

The training data for the face detector was generated by rendering seven textured

3-D head models [29]. The heads were rotated between )30� and 30� in depth and

illuminated by ambient light and a single directional light pointing towards the cen-

ter of the face. We generated 2457 face images of size 58� 58 pixels, some examples

are shown in Fig. 2. The negative training set initially consisted of 10,209 58� 58

non-face patterns randomly extracted from 502 non-face images. We expanded the

training set by bootstrapping [28] to 13,655 non-face patterns.

3.2. Recognition

We implemented two global recognition systems. Both systems were based on the

one-vs-all strategy for SVMmulti-class classification described in the previous section.

The first system had a linear SVM for every person in the database. Each SVM

was trained to distinguish between all images of a single person (labeled þ1) and

all other images in the training set (labeled �1). For both training and testing we first



Fig. 1. Examples of the global face detector applied to real images. Shown are pairs of the original image

and the extracted face part.

Fig. 2. Examples of synthetic faces used for training the face detector.
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ran the face detector on the input image to extract the face. We re-scaled the face

image to 40� 40 pixels and converted the gray values into a feature vector.2 Given

a set of q people and a set of q SVMs, each one associated to one person, the class

label y of a face pattern x is computed as follows:
2 W
y ¼ n if dnðxÞ þ t > 0;
0 if dnðxÞ þ t6 0;

�
ð3Þ
with
dnðxÞ ¼ max diðxÞf gqi¼1:
where diðxÞ is computed according to Eq. (2) for the SVM trained to recognize person

i. The classification threshold is denoted as t. The class label 0 stands for rejection.
e applied the same preprocessing steps to generate the features as for the face detector described.



Fig. 3. Binary tree of face images generated by divisive clustering.
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Changes in the head pose lead to strong variations in the images of a person�s
face. These in-class variations complicate the recognition task. For this reason, we

developed a second method in which we split the training images of each person into

clusters by a divisive cluster technique [30]. The algorithm starts with an initial clus-

ter including all face images of a person after preprocessing. The cluster with the

highest variance is split into two by a hyperplane. The variance of a cluster is calcu-

lated as:
3 In
r2 ¼ min
1

N
�
XN
m¼1

kxn

(
� xmk2

)N

n¼1

;

where N is the number of faces in the cluster. After the partitioning has been per-

formed, the face with the minimum distance to all other faces in the same cluster is

chosen to be the average face of the cluster. Iterative clustering stops when a max-

imum number of clusters is reached.3 The average faces can be arranged in a binary

tree. Fig. 3 shows the result of clustering applied to the training images of a person in

our database. The nodes represent the average faces; the leaves of the tree are some

example faces of the final clusters. As expected, divisive clustering performs a view-

specific grouping of faces.
our experiments we divided the face images of a person into four clusters.
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We trained a linear SVM to distinguish between all images in one cluster (labeled

+1) and all images of other people in the training set (labeled �1).4 Classification was

done according to Eq. (3) with q now being the number of clusters of all people in the

training set.
4. Component-based approach

The global approach is highly sensitive to image variations caused by facial rota-

tions. The component-based approach avoids this problem by independently detect-

ing parts of the face. For small rotations, the changes in the components are

relatively small compared to the changes in the whole face pattern. Changes in the

2-D locations of the components due to pose changes are accounted for by a learned,
flexible face model.

4.1. Detection

We implemented a two-level, component-based face detector which is described in

detail in [31]. In the following we give a brief overview of the system.

The principles of the component-based detection system are illustrated in Fig. 4.

On the first level, component classifiers independently detected facial components.
On the second level, a geometrical configuration classifier performed the final face

detection by combining the results of the component classifiers. Given a 58� 58 win-

dow, the maximum continuous outputs of the component classifiers within rectangu-

lar search regions around the expected positions of the components were used as

inputs to the geometrical configuration classifier. The search regions have been cal-

culated from the mean and standard deviation of the components� locations in the

training images. We also provided the geometrical classifier with the X–Y locations

of the maxima of the component classifier outputs relative to the upper left corner of
the 58� 58 window. The 14 facial components used in the detection system are

shown in Fig. 5a, their dimensions are given in Table 1. The shapes and positions

of the components have been automatically determined from the training data in or-

der to provide maximum discrimination between face and non-face images; see [31]

for details about the learning algorithm.

Training the component-based detector required the extraction of corresponding

components from a large number of training images. To automate the extraction

process we used a set of seven textured 3-D head models with known point-wise
3-D correspondences. As described in the previous section we rendered the head

models under varying pose and illumination. Knowing the correspondences between

the images we could locate and extract the 14 components from each of the synthetic

images to build a positive component training set. The negative component training

set was extracted from the same non-face patterns used for training the global face
4 This is not exactly a one-vs-all classifier since images of the same person but from different clusters

were omitted.



Fig. 4. System overview of the component-based face detector usin ur components.
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Fig. 5. (a) The 14 components of our face detector. The centers of the components are marked by a white

cross. The 10 components that were used for face recognition are shown in (b).

Table 1

Size of the 14 components of the component-based detector

Eyebrows Eyes Nose

bridge

Nose Nostrils Cheeks Mouth Lip Mouth

corners

Width 19 17 18 15 22 21 31 13 18

Height 15 17 16 20 12 20 15 16 11
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detector. We trained 14 linear SVMs on the component data and applied them to the

whole training set in order to generate the training data for the geometrical classifier.

In a final step, we trained the geometrical classifier, which was again a linear SVM,

on the X–Y locations and continuous outputs of the 14 component classifiers.
Our component-based face detector was computationally more expensive than the

global face detector. This was because the combined size of the 14 components was

about 1.12 times the size of the face region used in the global detector. In addition,

we had to locate the maxima of the responses of the component classifiers and com-

pute the output of the geometrical classifier. In average, the component-based detec-

tor was about 1.2 times slower than the global detector although we used linear

SVMs rather than the polynomial SVM used in global detection. If speed is of major

concern, we would suggest roughly localizing the face with a fast global face detector
or a skin detector and then apply the component-based detection.

4.2. Recognition

To train the face recognizer we first ran the component-based detector over each

image in the training set and extracted the components. From the 14 original com-

ponents we kept 10 for face recognition, removing those that either contained few



Fig. 6. Examples of component-based face detection. Shown are face parts covered by the 10 components

that were used for face recognition.
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gray value structures (e.g., cheeks) or strongly overlapped with other components.

The 10 selected components are shown in Fig. 5b. Examples of the component-based

face detector applied to images of the training set are shown in Fig. 6. To generate

the input to our face recognition classifier we normalized each of the components in

size and combined their gray values into a single feature vector.5 As for the first glo-
bal system we used a one-vs-all approach with a linear SVM for every person in the

database. The classification result was determined according to Eq. (3).
5. Experiments

The training data for the face recognition system was recorded with a digital video

camera at a frame rate of about 5Hz. The training set consisted of about 10,000 gray
5 Before extracting the components we applied the same preprocessing steps to the detected 40� 40

face image as in the global systems.



Table 2

Average number of support vectors per SVM classifier

Experiment Number of support vectors

Global linear SVMs 126

Global polynomial SVMs 147

Component linear SVMs 154
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face images of 10 subjects from which about 1400 were frontal views. The resolution

of the face images ranged between 80� 80 and 130� 130 pixels with rotations in az-

imuth up to about �40�. Since our images were taken from a dense video sequence,

they contained highly redundant information.6 This was reflected in the training re-

sults of the SVMs given in Table 2. The number of support vectors, i.e., the training

images based on which the decision function of the SVMs was computed, was small

compared to the overall number of training examples.

The test set was recorded with the same camera but on a separate day and under
different illumination and with different background. The set included 1544 images

of all 10 subjects in our database. The rotation in depth was again up to about

�40�. Compared to commonly used databases in face recognition, like the PIE da-

tabase from CMU [32] or the FERET database from NIST, our database included a

relatively small number of subjects. Since the goal of this paper is to compare two

fundamentally different approaches under similar conditions (i.e., same features,

similar classifiers, same training, and test sets) rather than presenting a system which

outperforms the best commercial face recognition system, we opted for a small da-
tabase which made the experiments much easier. For a larger number of subjects

the choice of binary classifiers, like SVMs, might not be appropriate since the com-

putational complexity for training and classification is linear with the number of

classes. We trained four different recognition systems on the 10,000 images: (1) glo-

bal system using one linear SVM classifier per person, (2) global system using one

second-degree polynomial SVM per person, (3) global system with one linear

SVM for each cluster, and (4) component-based approach with one linear SVM clas-

sifier per person. The ROC curves for the four systems are shown in Fig. 7.
There are three interesting observations:

• The component system outperformed the global systems for recognition rates lar-

ger than 60%. This was the case although the face classifier itself (10 linear SVMs)

was less powerful than the classifiers used in the global methods (10 non-linear

SVMs in the global method without clustering, and 40 linear SVMs in the method

with clustering).

• Clustering lead to a significant improvement of the global method. This is because

clustering generates view-specific clusters that have smaller in-class variations than
the whole set of images of a person. The global method with clustering and linear

SVMs was also superior to the global system without clustering and a non-linear

SVM. This shows that a combination of weak classifiers trained on properly
6 The average normalized correlation was 0.55 between the extracted face images of one person.



Fig. 7. ROC curves for the four systems.
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chosen subsets of the data can outperform a single, more powerful classifier

trained on the whole data.

• For low recognition rates the component classifier is slightly worse than the global

classifiers. This was probably because of failures in the component detection stage.
A visual analysis of the detection results showed that the component extraction

failed for about 40 faces with strong rotation while the global detector was able

to extract the faces properly. Some examples of misclassifications caused by false

detections are shown in Figs. 8 and 9.
Fig. 8. Examples from the test set, which were correctly classified by component-based face recognition

system.



Fig. 9. Examples of failures of the component-based face recognition caused by false detections of the

components.
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6. Conclusion and future work

We presented a component-based technique and two global techniques for face

recognition and evaluated their performance with respect to robustness against pose

changes. The component-based system detected and extracted a set of 10 facial com-

ponents and arranged them in a single feature vector that was classified by linear

SVMs. In both global systems we detected the whole face, extracted it from the im-

age, and used it as input to the classifiers. The first global system consisted of a single

SVM for each person in the database. In the second system we clustered the database
of each person and trained a set of view-specific SVM classifiers. We tested the sys-

tems on a database which included faces rotated in depth up to about 40�. In the ex-

periment the component-based system outperformed the global systems even though

we used more powerful classifiers (i.e., non-linear instead of linear SVMs) for the

global system. Some of the classification errors in the component-based recognition

resulted from inaccurate extraction of the components. Improvement can be ex-

pected from our recent work on component detection [33] where we used pairwise

conditional probabilities of the component positions to increase the localization ac-
curacy. Despite some degree of pose invariance, the current component-based clas-

sifier cannot deal with the full range of poses (from frontal to profile views). To solve

this problem it will be necessary to train view-specific component classifiers, e.g., two

mouth classifiers trained on frontal and profile views, respectively. Another signifi-

cant step towards achieving view invariance can be expected from the use of 3-D

head models for training along the lines described in [31]. A preliminary study on

combining 3-D morphable models [29] with component-based face recognition

showed promising results on synthetic test data [34].
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