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Full-body person recognition system
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Abstract

We describe a system that learns from examples to recognize persons in images taken indoors. Images of full-body persons
are represented by color-based and shape-based features. Recognition is carried out through combinations of Support Vector
Machine (SVM) classi8ers. Di:erent types of multi-class strategies based on SVMs are explored and compared to k-Nearest
Neighbors classi8ers. The experimental results show high recognition rates and indicate the strength of SVM-based classi8ers
to improve both generalization and run-time performance. The system works in real-time.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Digital video cameras connected to computers have
come into wide use recently. Still, visual surveillance is
mainly performed by humans. In the future, automatic vi-
sual surveillance systems could play an important role in
supporting and eventually replacing human observers. To
become practical these systems have to be able to perform
the following basic tasks: (a) Detect and track people and
(b) person recognition. In this paper we mainly focus on
the identi8cation task. However, since person identi8ca-
tion often implies a prior detection step we also discuss
approaches to detecting people.

There is a vast number of computer vision techniques
that can be used in automatic visual surveillance systems:
Face detection [1–4] and face recognition [5–7] have been
thoroughly studied over the past 10 years in computer
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vision. While recent face detection systems [1,3] are able to
deal with large pose variations, face recognition systems are
restricted to identifying persons in frontal and near-frontal
views only. More recently, learning-based techniques [8]
and template matching [9] have been applied to detecting
people in still images. As shown in Refs. [10,11] the peri-
odicity of gait allows to detect walking people in image se-
quences. Gait has also been used to for person recognition in
image sequences [12]. The results in Ref. [12] have been re-
ported on a small set of 8ve subjects. It is not clear whether
larger numbers of people can be distinguished based on gait
only.

Although the above mentioned techniques show good
results in constrained application scenarios, the general
task of people detection and identi8cation still presents a
number of challenges: The invariance against pose changes,
the invariance against changes in illumination, and the
selection of image features that allow to reliably identify
people.

This paper addresses surveillance scenarios where the
pose of people is unconstrained which makes it diGcult to
apply common face recognition algorithms. Such scenarios
typically occur in so called crowd surveillance applications.
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In addition the image resolution is too low for face recog-
nition systems to be applied.

In our experimental setup the goal was to recognize mem-
bers of our Lab while they were using an espresso co:ee
machine located in the Lab’s main oGce [13]. The cam-
era was located in front of the co:ee machine at a distance
of about 4:5 m; background and lighting were almost in-
variant. Recognition was based on the assumption that the
same person was going to have the same general appearance
(clothes) during the day.

Recognition is carried out through combinations of Sup-
port Vector Machines (SVMs). SVMs [14,15] have been
already successfully applied to various two-class problems,
such as pedestrian and face detection [16,17,1]. Recently
several methods have been proposed in order to expand the
application 8eld of SVMs to multi-class problems [18–21].
In this paper, we use and compare these methods to recog-
nize persons and their poses. The experiments show high
recognition rates indicating the relevance of our system for
the development of more sophisticated indoor surveillance
applications.

The paper is organized as follows: Section 2 presents
an outline of the person recognition system. In Section 3
we brieKy describe SVMs and multi-class SVMs. Section
4 presents the experimental results for recognizing persons
and pose estimation. Section 5 discusses multi-class SVMs
and the extension methods of the system. We conclude in
Section 6.

2. System outline

The system consists of two modules: Image pre-processing
and person/pose recognition. Fig. 1 shows the system
overview. Each image from the camera is forwarded to the
pre-processing module where we extract the person from
the background and calculate shape and color features.
Based on these features, the persons identity and pose are
determined in the recognition module.

2.1. Pre-processing

The pre-processing module consists of two parts: detec-
tion of moving persons and extraction of image features.

2.1.1. Person detection
The system uses two steps to detect a moving person in

an image sequence. In the 8rst step the system subtracts
the current background image (see below) from the latest k
images, 1 and stores one of these k images, if any, whose
corresponding subtracted image has energy larger than a
threshold. However, the result of background subtraction
may include a lot of noise and sometimes the stored image
does not contain a person. The second step helps discarding

1 In our experiments we chose k = 3.

Fig. 1. Outline of the system.

Fig. 2. An example of moving person detection.

those images not containing a person. To this purpose, the
system extracts the silhouette of a possible person by using
edge detection. Assuming that the person is slightly moving
between two frames, the system performs edge detection on
the image obtained by subtracting two consecutive images
in the sequence. If the number of edge pixels is larger than a
threshold, one of the k images is eventually stored. Finally,
if no person image is detected, the background is updated
by computing the average of the k latest images. Fig. 2(a)
shows an image from the sequence and Fig. 2(b) shows the
combined result of the two steps.

2.1.2. Feature extraction
Once the person has been detected and extracted from the

background, we calculate di:erent types of image features:

(1) RGB color histogram
We calculate one dimensional color histogram with 32
bins for each color channel. The total number of ex-
tracted features is 96 (32 × 3) for a single image.

(2) Normalized color histograms
We calculate two dimensional normalized color his-
tograms; r=R=(R+G+B), g=G=(R+G+B). Again,
we chose 32 bins for each color channel. Overall, the
system extracts 1024 (32 × 32) features from a single
image.

(3) RGB color histogram+shape histogram
We calculate simple shape features of people by count-
ing pixels along rows and columns of the extracted body
images. We chose a resolution of 10 bins for column
histograms and 30 bins for row histograms. The total
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Fig. 3. Shape patterns.

number of extracted features is 136, 32×3 for the RGB
histograms and 10 + 30 for the shape histograms.

(4) Local shape features
Local features of an image are obtained by convolving
the local shape patterns shown in Fig. 3. These patterns
were introduced in Ref. [22] for position invariant per-
son detection. Let Mi; i = 1; : : : ; 25, be the patterns in
Fig. 3 and Vk the 3×3 patch at pixel k in an image. We
consider two di:erent types of convolution operations.
The 8rst is the linear convolution given by

∑
k Vk ·Mi,

where the sum is on the image pixels. The second is a
non-linear convolution given by Fi =

∑
k C(k; i), where

C(k; i) =

{
Vk ·Mi if Vk ·Mi = maxj (Vk ·Mj)

0 otherwise:

The system uses the simple convolution from the pattern
1 to 5 and the non-linear convolution from the pattern 6
to 25. The non-linear convolution mainly extracts edges
and has been inspired by recent work in the 8eld of brain
models [23]. The shape features are extracted for each
of the following color channels separately: R+G − B,
R−G and R+G. This color model has been suggested
by physiological studies [24]. The system extracts 75
(25 × 3) features from the three color channels.

2.2. Recognition

In order to develop a recognition system we 8rst collect
a data set of N images of people and manually label it
according to the identity and pose of the person. The set of
input–output examples is

(x1; y1); (x2; y2); : : : ; (xN ; yN );

where the input xi denotes the feature vector extracted from
image i and the output yi is a class label. If the task is person
recognition, the class label yi encodes the identity of the
person, in the case of pose estimation the class label encodes

the pose (right, left, front or back) of the person. We train
di:erent SVM classi8ers on the labeled data to perform the
multi-class classi8cation task for person identi8cation and
pose estimation.

SVMs are a technique to train classi8ers, regressors and
probability densities that is well-founded in statistical learn-
ing theory [15]. One of the main attractions of using SVMs is
that they are capable of learning in sparse, high dimensional
spaces with very few training examples. SVMs accomplish
this by minimizing a bound on the empirical error and the
complexity of the classi8er, at the same time. This control-
ling of both the training error and the classi8er’s complexity
has allowed SVMs to be successfully applied to very high
dimensional learning tasks such as face detection [25], 3-D
object recognition [18], stop word detection in speech sig-
nals [26], and text categorization [27]. We will make use
of this property of being able to apply SVMs to very high
dimensional classi8cation problems.

3. Support vector machines

In this section we brieKy overview the main concepts of
SVMs [15] for pattern classi8cation. More detailed accounts
are Refs. [15,28,19].

3.1. Binary classi>cation

SVMs perform pattern recognition for two-class problems
by determining the separating hyperplane 2 with maximum
distance to the closest points of the training set. These points
are called support vectors. If the data is not linearly separa-
ble in the input space, a non-linear transformation �(·) can
be applied which maps the data points x∈Rn into a high
(possibly in8nite) dimensional space H which is called fea-
ture space. The data in the feature space is then separated
by the optimal hyperplane as described above.

The mapping �(·) is represented in the SVM classi8er by
a kernel function K(·; ·) which de8nes an inner product in
H , i.e. K(x; t) = �(x) · �(t). The decision function of the
SVM has the form:

f(x) =
‘∑
i=1

�iciK(xi ; x); (1)

where ‘ is the number of data points, and ci ∈{−1; 1} is
the class label of training point xi. CoeGcients �i in Eq. (1)
can be found by solving a quadratic programming problem
with linear constrains. The support vectors are the nearest
points to the separating boundary and are the only ones for
which �i in Eq. (1) can be nonzero.

An important family of admissible kernel functions are
the Gaussian kernel:

K(x; y) = exp(−‖x− y‖=2�2);

2 SVMs theory also includes the case of non-separable data, see
Ref. [15].
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with � the variance of the Gaussian, and the polynomial
kernels:

K(x; y) = (1 + x · y)d;
with d the degree of the polynomial. For other important ex-
amples of kernel functions used in practice see Refs. [28,15].

3.2. Multi-class classi>cation

Like many discriminative classi8ers, SVMs are designed
to solve binary classi8cation problems. However, many
real-world classi8cation problems involve more than two
classes. Attempts to solve q-class problems with SVMs
have involved training q SVMs, each of which separates
a single class from all remaining classes [14,29], or train-
ing q2 machines, each of which separates a pair of classes
[30,31,18]. The 8rst type of classi8ers are usually called
one-vs-all, 3 while classi8ers of the second type are called
pairwise classi8ers.

In this paper we used three types of multi-class classi8ca-
tion schemes which are based on the combination of binary
SVMs: the 8rst scheme combines one-vs-all classi8ers and
the other two schemes combine pairwise classi8ers. Let us
see how each of these systems is computed:

• One versus all
In the one-vs-all type scheme [14], there is one SVM clas-
si8er associated to each class. For each class j∈{1; : : : ; q}
the corresponding classi8er is trained to separate the ex-
amples in this class (positive labeled) from the remaining
ones (negative labeled). A new input vector is classi8ed
in one class for which associated classi8er has the highest
score among all classi8ers.

• Bottom-UP decision tree
We begin to form a binary tree with q − 1 nodes. This
tree has no more than q − 1 layers and exactly q leaves.
Each node in the tree has two inputs and one output. We
assign a di:erent class to each leaf.
Classi8cation of an input point starts at the bottom layer.
For each node in this layer, the pairwise SVMs classi8er is
computed and the result of the classi8cation (the winning
class) assigned to the output node. The same procedure is
repeated for the next layer until the top node is reached.
At the top node only two classes remain and the 8nal
classi8cation is determined by the SVM corresponding
to these two classes. We call this classi8cation scheme
bottom-up decision tree as the classi8cation is carried out
form the bottom of the tree to the top.
As an example, consider the tree of Fig. 4(a). This tree
has two layers. There are two nodes in the bottom layer
and one node in the 8rst layer. In the bottom nodes, the
A/B and C/D SVMs classi8ers are evaluated to classify

3 This notation is an abbreviation for “one versus all the remain-
ing”.

Fig. 4. (a) Bottom-up decision tree; (b) Top-down decision graph.

an input vector. In the top node, the SVM trained to dis-
tinguish between the two winning classes is evaluated.
For example, if A and D win in the bottom layer, the A/D
SVM is evaluated in the top node.
This scheme is an extension of the so called “tennis tour-
naments” discussed in Ref. [18]. There, the number of
classes was restricted to be a power of two and only fully
symmetric trees were considered, i.e. the depth of the tree
was chosen to be log2 q.

• Top-down decision graph
This scheme was recently proposed in Ref. [19]. The sys-
tem architecture is based on the so called direct acyclic
graph. This graph has the shape of a triangle, with q− 1
layers. The jth layer has j nodes, each with two edges. For
each layer except the last one, the ith node is connected
to the ith and (i + 1)th nodes of the next layer. The 8rst
layer contains only one node, which is the root node of
the graph. The number of nodes is equal to q(q−1)=2 and
each node is associated to a pairwise SVM classi8er as
following: (i) An ordered pair of classes at the root node
is selected. (ii) If (a; b) is the ordered pair of classes as-
signed to the ith node of the jth layer, the ith and (i+1)th
nodes in the (j + 1)th layer will have pairwise classi8er
(a; ·) and (·; b), respectively.
Considering a four-class example, each node in the deci-
sion graph in Fig. 4(b) represents a pairwise SVM. Classi-
8cation of an input vector starts from the root node of the
graph and follows the decision path along the graph. For
example, if the A/D SVM in the root node of the graph
in Fig. 4(b) classi8es the input as belonging to class A,
the node is exited via the left edge.

Notice that at run-time all three strategies require the eval-
uation of about the same number of classi8ers (q for the
pairwise schemes and q−1 for the one-vs-all scheme). How-
ever, we expect the computation time to be much shorter
when pairwise classi8ers are used, since in this case fewer
support vectors are expected. Furthermore, the training time
is signi8cantly faster in the pairwise case as each classi8er is
trained only on a small subset of the data. There is no theo-
retical analysis of the schemes with respect to classi8cation
performance. Based on the previous observations and exper-
iments, the pairwise scheme seems to be more user-friendly
than the one-vs-all.
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Fig. 5. (a) Examples of the four people in the frontal pose; (b) Examples of the four poses for one person.

4. Experiments

In this section we report on two di:erent sets of exper-
iments. In our experimental setup a color camera recorded
Lab members in our main oGce while they were using a
co:ee machine. The camera was located in front of the cof-
fee machine at a distance of about 15 feet. Images were
recorded at a 8xed focus, background and lighting were al-
most invariant.

In the 8rst experiment, we evaluated the use of di:er-
ent sets of image features and di:erent types of classi8ers
(multi-class SVMs and k-NNs). The task in the 8rst experi-
ment was to distinguish four di:erent persons and to recog-
nize their poses using recordings of one day. In the second
experiment, we chose the best features as determined in the
8rst experiment and increased the number of persons to be
recognized to eight and the time span of our recordings to
16 days.

4.1. Person recognition and pose estimation

In this experiment the system was trained to recognize
four persons and to estimate their poses (front, back, left
and right). Training and test images were recorded during
one day. Example images of the four persons are shown in
Fig. 5(a); example images of a person in four poses are
shown in Fig. 5(b). We used 640 images to train the sys-
tem, 40 for each person at each pose. First, we trained
a multi-class classi8er to identify a person. The training
set contained 160 images per person, 40 per pose. Then,
multi-class pose classi8ers were trained for each person
separately. To summarize, 8ve multi-class classi8ers were
trained, one for recognizing persons and four for pose esti-
mation. The system 8rst recognized the person and then se-
lected the proper multi-class classi8er to determine the pose
of the person.

Fig. 6 shows an example of the output of the system. The
upper left corner shows the name of the recognized person,
the lower left corner shows the estimated pose. The white
boxes in the center of the images are the results of the detec-
tion module. Table 1 shows the people identi8cation rates

for di:erent types of features and di:erent types of classi8ers
including three versions of multi-class SVMs and a k-NN
classi8er. 4 Table 2 shows the pose estimation rates. These
rates were computed on a test set of 418 images containing
approximatively the same number of people/pose images.
For both tasks, person identi8cation and pose estimation,
the best results were obtained with normalized color fea-
tures (1024 dimension). The three types of SVM classi8ers
showed similar recognition rates, which were slightly better
than the recognition rates achieved by k-NN classi8ers. No-
tice that recognition rates for poses are lower than that for
identi8cation. People can be easily distinguished based on
their clothes. Pose estimation is a more diGcult because of
the similarity between right/left poses and front/back poses.
We expected global shape features based on row and column
histograms to be helpful for pose estimation. However, the
performance decreased when adding row and column his-
tograms to the input features. This is because of arm move-
ments of people and varying distances between people and
camera that lead to signi8cant changes in the shape and size
of the body silhouettes. On the other hand, local shape fea-
tures performed well for both: person recognition and pose
estimation.

4.2. Increasing the data set

In the second experiment we repeated the previous
experiment on a data set containing images of eight per-
sons recorded over several days. About 3500 images were
recorded during 16 days. From the 3500 images we selected
1127 images belonging to the eight most frequent users of
the co:ee machine. Some example images 5 of these eight
persons are shown in Fig. 7. The images were represented
by their normalized color histograms. We chose these fea-
tures because they showed the best performance in the 8rst
experiment.

4 In case of a tie, the system chose the class whose nearest
neighbors has minimum average distance from the input.

5 The complete dataset can be downloaded from the CBCL
Homepage at http://www.ai.mit.edu/projects/cbcl.

http://www.ai.mit.edu/projects/cbcl
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Fig. 6. Examples of people identi8cation and pose estimation results.

Table 1
Person recognition and pose estimation rates from the test set of the four persons

Features SVMs k-Nearest Neighbor

Top-down Bottom-up One-vs-all k = 1 k = 3 k = 5

RGB (96) 99.5 99.2 99.5 99.0 98.7 98.5
Norm. RGB (1024) 100 100 100 100 100 100
RGB+Shape (136) 91.4 91.6 96.2 94.7 94.4 94.1
Local Shape (75) 99.5 99.5 97.5 88.3 85.0 84.8

Table 2
Pose estimation rates from the test set of the four persons

Features SVMs k-Nearest Neighbor

Top-down Bottom-up One-vs-all k = 1 k = 3 k = 5

RGB (96) 74.9 75.9 83.8 70.1 70.6 72.3
Norm. RGB (1024) 86.5 86.3 87.8 85.5 85.8 86.0
RGB+ Shape (136) 68.0 68.2 70.1 67.8 66.8 65.7
Local Shape (75) 84.5 84.3 84.0 82.0 82.7 82.0

We performed 8ve di:erent sets of experiments where the
system was trained to recognize the eight persons. In the 8rst
four experiments we used about 90%, 80%, 50%, and 20%
of the image database for training. The remaining images
were used for testing. In the 8fth experiment the training set

consisted of all images recorded during the 8rst 15 days, the
test set included all images recorded during the last day.

Recognition rates are shown in Table 3. The system per-
formed well when the training set contained images from
all 16 days (8rst four experiments). The recognition rate
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Fig. 7. Image examples of the eight people recorded during di:erent days used in the experiments in Section 4.

decreased to about 50% when the system was tested on im-
ages recorded during a new day (last experiment). This is
because people wore di:erent clothes every day, so that the
system was not able to recognize them based on the color of
their clothes only. Notice that this rate is still signi8cantly
better than chance (12.5%). Overall k-NN was slightly bet-
ter than linear SVMs. Preliminary tests with SVMs with
second degree polynomial showed a signi8cantly better per-
formance than k-NN; the best recognition rate is clearly

achieved with second degree polynomial SVMs (see Table
3). However, due to the o: of the computational complex-
ity, we are using the linear kernel for real-time recognition.

5. Discussion

In this section we discuss a few issues arising in design-
ing multi-class SVMs and outline future extensions of the
proposed system.
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Table 3
People recognition rates for eight people. The using feature is the normalized color features: 1024 dimension

1:9 1:5 1:1 5:1 New Day
(test : training) (113:1014) (188:939) (564:563) (939:188) (122:1005)

Top-down 92.3 91.2 90.5 73.3 45.9
Bottom-up 90.6 91.7 90.6 66.1 45.9
One-vs-all 87.2 90.6 85.9 84.6 49.2

SVM One-vs-all 98.3 96.4 94.7 88.1 52.9
(Polynomial)

k = 1 92.9 92.0 92.7 85.1 53.3
kNN k = 3 92.9 92.0 92.2 81.3 50.0

k = 5 94.7 91.0 90.1 76.0 50.8

5.1. More about multi-class

There are two observations about designing multi-class
classi8ers which we want to discuss.

First, note that both in the one-vs-all and in the pairwise
approach, each classi8er is trained separately from the oth-
ers, i.e. classi8ers are computed by solving separate opti-
mization problems. Earlier work [32] has attempted to for-
mulate the one-vs-all SVM scheme as a single optimization
problem. However, their approach appears to be both slower
and less e:ective than the standard one-vs-all method used
here. Very recent work has extended the concept of margin
to the case of multi-class classi8ers and a new algorithm for
globally training the one-vs-all SVM scheme was proposed
[33]. In future work we will explore the advantage of this
approach on our database. At the same time it would be in-
teresting to explore algorithms as the one in Ref. [33] for
training the pairwise SVM classi8ers as well.

The second observation is that classi8cation schemes
based on training one-vs-all and pairwise classi8ers are two
extreme approaches: the 8rst uses all the data, the second
the smallest portion of the data. It would be interesting to
study intermediate classi8cation strategies in the style of
error-correcting codes (ECC) [34,35]. In this case, each
classi8er is trained to separate a subset of classes from
another disjoint subset of classes (the union of these two
subsets does not need to cover all the classes). The clas-
si8cation works as follows: If a subset is selected by a
classi8er all classes within the subset get a vote. In the end
the class with the most votes is the winner. 6

ECC seems to be e:ective when the classes are based
on some common features each of which is “active” on a
di:erent subset of the classes. In our case, each machine
could be based on di:erent color/shape features. See also
Ref. [36] for related considerations.

6 In the case of a tie, the winner class is picked randomly among
the tied class.

Finally, it will be also interesting in the future to investi-
gate other simple classi8cation tools such as Fisher discrim-
inant analysis and their variations (see, e.g., [37]), which
could be potentially useful for this task. However, it is clear
that in order to obtain major improvements one needs to
change the system design which is what we brieKy discuss
next.

5.2. System extensions

The proposed system showed high performance rates for
person recognition when both the training and test images
were recorded during the same days. When the test set con-
tained images of a day not represented in the training set the
performance of the system drops down to about 53%. This
is the main limitation of the current system. Since clothes
of people usually change every day we have to add more
invariant features to extend the capabilities of the system.
These features could be extracted from the face regions in
the images. Unfortunately the image resolution in our cur-
rent system is too low for face recognition. One possibil-
ity would be to add a second camera which takes a higher
resolution image of the persons face. Then we could per-
form recognition of a person by combining body and the
face classi8cation. Future research will investigate these
problems.

6. Conclusion

We have presented a system that recognizes full-body
persons in a constrained environment. Person recognition
was performed by multi-class SVMs that were trained
on color images of people. The images were represented
by di:erent sets of color and shape-based features. The
proposed system works in real-time using linear SVMs,
achieving high recognition rate on normalized color his-
tograms of peoples’ clothes. When non-linear SVMs are
used the system performs signi8cantly improves over
k-NN classi8ers. These results indicate the relevance of the
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presented method for automatic daily surveillance in indoor
environments.
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